

 Navigation

 	
 index

 	
 next |

 	froide 1.0a1 documentation

Welcome to froide’s documentation!

Froide is a Freedom of Information platform written in Python using the Django Web framework. It manages public bodies and FoI requests. Users can send emails to public bodies and receive answers via the platform.

It was developed to power Frag den Staat [https://fragdenstaat.de] – the German
Freedom of Information Portal.

	About
	Development Goals

	Features

	Dependencies

	Name

	Getting Started
	Set up the development environment

	Run tests

	Search with Haystack and Solr

	Background Processing with Celery

	Froide Data Model
	Public Body

	FoiLaw

	FoiRequest

	FoiMessage

	FoiAttachment

	PublicBodySuggestion

	FoiRequestFollower

	Configuration
	Froide Configuration

	Greeting Regexes

	Index Boosting of Public Bodies

	Settings for Sending E-Mail

	Public Body E-Mail Dry-run

	Setting Up Search with Solr

	Setting Up Background Processing with Celery

	Some more settings

	Securing your site

	Production Setup

Indices and tables

	Index

	Module Index

	Search Page

 Copyright 2011, Stefan Wehrmeyer.
 Created using Sphinx 1.1.3.

 Brought to you by Read the Docs

 	latest

 	v2.0

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	froide 1.0a1 documentation

About

Froide was designed to mimic the functionality of What do they know [http://whatdotheyknow.com] – a Freedom of Information portal in the UK written in Ruby on Rails 2.3. At the time when a German FoI portal was needed, the general FoI solution forked from WDTK called Alaveteli [http://alaveteli.org] was hard to install and not ready for reuse.
That’s why Froide was developed as a fresh start, fully
internationalized and configurable written in Django 1.3 to power Frag den Staat [https://fragdenstaat.de].

Development Goals

Froide has some development goals that are listed below. Some of them
are a continuous effort, some are achieved, on others development is
still ongoing.

	Internationalization (i18n): Keep the code fully internationalized and
localized.

	Flexible and Configurable: Many aspects of an FoI platform depend on local customs and laws. These aspects should be either configurable via settings or easily replaceable.

	Easy to install: Keep dependencies to one language environment (Python) and use abstraction layers for backends like search, caching etc. to enable different setups.

	Maintain a test suite with a high test coverage.

Features

	Froide uses many of the built-in Django features like the Admin interface to
manage and update entities in the system, the internationalization
system, and the user management and authentication.

	Freedom of Information Laws and Public Entities are connected through a many-to-many relationship. That allows for a Public Body to be accountable under different laws.

	A Public Body can have a parent to represent hierarchies from the real
world. They can also be categorized into classifications (e.g. ministry, council) and topics (e.g. environment, military) which can be defined separately.

	Users can create requests without a Public Body so that others can
suggest an appropriate recipient later.

	Requests can optionally be kept private by users and published at a
later point (e.g. after a related article has been published).

	Requests are mailed to Public Bodies through the platform via a special,
request-unique email address (using SMTP) and the platform will receive answers on
that mail address (by accessing an IMAP account).

	Search functionality for Requests and Public Bodies.

	Error Reporting interface via Sentry.

Dependencies

A detailed list of Python package dependencies can be found in requirements.txt, but here is a general overview:

	Django 1.3 - the Web framework

	South 0.7.3 - the database migration framework (development dependency)

	Sphinx 1.0.7 - the documentation tool (development dependency)

	Celery 2.2.5 - task queue for background processing

	Haystack 1.2.0 - abstraction layer for search

A development goal is that, even though a task queue (like Celery) and a search server (like Solr) are highly recommended, they are not necessary for either development or production setup and can be replaced with Cronjobs and database queries respectively (results/performance will probably degrade, but it should work).

Name

Froide stems from “Freedom of Information de” (de for Germany) and sounds
like the German word “Freude” which means joy.

 Copyright 2011, Stefan Wehrmeyer.
 Created using Sphinx 1.1.3.

 Brought to you by Read the Docs

 	latest

 	v2.0

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	froide 1.0a1 documentation

Getting Started

This is a guide that will get you started with Froide in no time. Some
more advanced features are discussed at the end.

Set up the development environment

You should be using virtualenv and it is suggested you
also use virtualenvwrapper. Setup a virtual environment for development like so:

mkvirtualenv --no-site-packages froide

Get the source code with Git from the official GitHub repository or from
your fork:

git clone git://github.com/stefanw/froide.git
cd froide

Install the requirements inside the virtual env with pip:

which pip
<should display your virtual env pip>
pip install -r requirements.txt

If only your global pip is available, run easy_install pip. The dependency installation takes a couple of seconds, but after that everything is in place.

Copy local_settings.py.example to local_settings.py:

cd froide
cp local_settings.py.example local_settings.py

The development environment uses SQLite. You can change that in local_settings.py, if you want, but you don’t have to.
Sync and migrate and do NOT create a superuser just yet:

python manage.py syncdb --noinput --migrate

Now you can create a superuser account:

python manage.py createsuperuser

That’s it for a setup that basically works. Run this:

python manage.py runserver

and go to http://localhost:8000. You should
be greeted by a working Froide installation. It doesn’t have any data
inside, but you can change that by going to http://localhost:8000/admin/ and logging in with your superuser account.

For more information on the different models you find in the admin visit Froide Data Model.

Run tests

Froide has a test suite. Copy test_settings.py.example to test_settings.py. test_settings.py does not import your local_settings.py changes.

You can then run the shell script for tests:

sh runtests.sh

This also does timing and a test coverage analysis that you can then
find at htmlcov/index.html.
Note some tests will not work without a search engine like solr running.

Search with Haystack and Solr

Background Processing with Celery

 Copyright 2011, Stefan Wehrmeyer.
 Created using Sphinx 1.1.3.

 Brought to you by Read the Docs

 	latest

 	v2.0

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	froide 1.0a1 documentation

Froide Data Model

The following will describe the most important entities, their important
fields and their relation to each other. Froide uses South for database
migrations, so if you find yourself in need of an additional field to
cover some data point, do not hesitate to add it to your fork, migrating
is easy.

Public Body

FoiLaw

FoiRequest

FoiMessage

FoiAttachment

PublicBodySuggestion

FoiRequestFollower

 Copyright 2011, Stefan Wehrmeyer.
 Created using Sphinx 1.1.3.

 Brought to you by Read the Docs

 	latest

 	v2.0

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	froide 1.0a1 documentation

Configuration

Froide can be configured in many ways to reflect the needs of your local FoI portal.

All configuration is kept in the Django settings.py file. Individual settings can be overwritten by placing a local_settings.py file on the Python path (e.g. in the same directory) and redefining the configuration key in there.

Froide Configuration

There is a dictionary called FROIDE_CONFIG inside settings.py that acts as a namespace for some other configurations. These settings are also available in the template via the name froide through the context processor froide.helper.context_processors.froide.

The following keys in that dictionary must be present:

	create_new_publicbody

	boolean Are users allowed to create new public bodies when making a request by filling in some details?
Newly created public bodies must be approved by an administrator before the request is sent.

	publicbody_empty

	boolean Can users leave the public body empty on a request, so other users can suggest an appropriate public body later?

	users_can_hide_web

	boolean Can users hide their name on the portal? Their name will always be sent with the request, but may not appear on the website.

	public_body_officials_public

	boolean Are the names of responding public body officials public and visible on the Web?

	public_body_officials_email_public

	boolean Are the email addresses of public body officials public and visible on the Web?

	currency

	string The currency in which payments (if at all) occur

	default_law

	integer The id of the Freedom of Information law in the database
that is used by default (e.g. 1)

Greeting Regexes

To detect names and beginning and endings of letters the standard
settings define a list of common English letter greeting and closing
regexes that also find the name:

import re
rec = re.compile
define your greetings and closing regexes
POSSIBLE_GREETINGS = [rec(u"Dear (?:Mr\.?|Ms\.? .*?)")]
POSSIE_CLOSINGS = [rec(u"Sincerely yours,?")]

You should replace this with a list of the most common expressions in
your language.

Index Boosting of Public Bodies

Some Public Bodies are more important and should appear first in
searches (if their name and description match the search terms). You can
provide a mapping of public body classifications (e.g. ministry,
council etc.) to their search boost factor via the FROIDE_PUBLIC_BODY_BOOSTS setting:

boost public bodies by their classification
FROIDE_PUBLIC_BODY_BOOSTS = {
 u"Ministry": 1.9,
 u"Council": 0.8
}

Settings for Sending E-Mail

You must adapt the standard Django parameters for sending email.
Configure the backend depending on your environment (development vs.
production):

development environment:
EMAIL_BACKEND = 'django.core.mail.backends.console.EmailBackend'
production environment:
EMAIL_BACKEND = 'djcelery_email.backends.CeleryEmailBackend'

Define the standard Django SMTP parameters for sending regular email notifications (not FoI request emails to public bodies):

EMAIL_HOST = "smtp.example.com"
EMAIL_PORT = 587
EMAIL_HOST_USER = "mail@foi.example.com"
EMAIL_HOST_PASSWORD = "password"
EMAIL_USE_TLS = True

Also define the parameters for sending FoI-Mails to public bodies.
They might be different because they can either be sent from a fixed
address and with a special Reply-To field or directly from a special
address:

Sends mail from a fixed from address with Reply-To field
FOI_EMAIL_FIXED_FROM_ADDRESS = True
FOI_EMAIL_HOST_USER = "foirelay@foi.example.com"
FOI_EMAIL_HOST_PASSWORD = "password"
FOI_EMAIL_HOST = "smtp.example.com"
FOI_EMAIL_PORT = 537
FOI_EMAIL_USE_TLS = True

Finally give the IMAP settings of the account that receives all FoI
email. This account is polled regularly and the messages are processed
and displayed on the website if their To field matches:

FOI_EMAIL_DOMAIN = "foi.example.com"
FOI_EMAIL_PORT_IMAP = 993
FOI_EMAIL_HOST_IMAP = "imap.example.com"
FOI_EMAIL_ACCOUNT_NAME = "foirelay@foi.example.com"
FOI_EMAIL_ACCOUNT_PASSWORD = "password"

Public Body E-Mail Dry-run

You can set your site up and test it out in a production environment
while sending public body emails not to the public bodies but to
another mail server. Use the following settings:

FROIDE_DRYRUN = True
FROIDE_DRYRUN_DOMAIN = "mymail.example.com"

This converts public body email addresses from

public-body@example.com

to

public-body+example.com@mymail.example.com

right before the mail is
sent out (the changed address is not stored). This allows for some
testing of sending and receiving mails to and from public bodies wihtout spamming them.

Setting Up Search with Solr

Froide uses django-haystack to interface with a search. Solr is
recommended, but thanks to django-haystack you can use something
else as well.

Haystack configuration for solr works like so:

HAYSTACK_SITECONF = 'froide.search_sites'
HAYSTACK_SEARCH_ENGINE = 'solr'
HAYSTACK_SOLR_URL = 'http://127.0.0.1:8983/solr'

If you have a solr multicore setup, your solr URL would probably look more like this:

HAYSTACK_SOLR_URL = 'http://127.0.0.1:8983/solr/froide'

For details, please refer to the Haystack Documentation [http://haystacksearch.org].

Setting Up Background Processing with Celery

The following part in settings.py does the configuration of Celery.
Overwrite the CELERY* values with your own in local_settings.py:

import djcelery
djcelery.setup_loader()

CELERY_IMPORTS = ("foirequest.tasks",)

CELERY_RESULT_BACKEND = "database"
CELERY_RESULT_DBURI = "sqlite:///dev.db"

CELERYBEAT_SCHEDULER = "djcelery.schedulers.DatabaseScheduler"

For details please refer to the django-celery documentation [http://django-celery.readthedocs.org/en/latest/index.html].

Some more settings

Configure the name and default domain URL (without trailing slash) of your site with the following settings:

SITE_NAME = 'FroIde'
SITE_URL = 'http://localhost:8000'

You can give a URL with string formatting placeholders query and domain in them that will be presented to the user as the URL for web searches via the setting SEARCH_ENGINE_QUERY. The default is a Google search.

Securing your site

It may be a good idea to NOT use easily guessable URL paths for
specific parts of the site, specifically the admin. To make these
parts configurable by local_settings you can use the following
setting:

SECRET_URLS = {
 "admin": "my-secret-admin",
 "sentry": "my-secret-sentry"
}

It’s also recommended to protect the admin and sentry further via HTTP
auth in your production reverse proxy (e.g. nginx).

The app djangosecure [https://github.com/carljm/django-secure/] is part of Froide
and it is highly recommended to
deploy the site with SSL (get a free SSL certificate from StartSSL [https://github.com/ioerror/duraconf/blob/master/startssl/README.markdown]).

Some Django settings related to security and SSL:

CSRF_COOKIE_SECURE = True
CSRF_FAILURE_VIEW = 'froide.account.views.csrf_failure'

SESSION_COOKIE_AGE = 3628800 # six weeks for usability
SESSION_COOKIE_HTTPONLY = True
SESSION_COOKIE_SECURE = True

 Copyright 2011, Stefan Wehrmeyer.
 Created using Sphinx 1.1.3.

 Brought to you by Read the Docs

 	latest

 	v2.0

 Navigation

 	
 index

 	
 previous |

 	froide 1.0a1 documentation

Production Setup

This page will describe how to setup Froide for a production ready setup. This is an example, your personal flavor of how to set this up may vary.

 Copyright 2011, Stefan Wehrmeyer.
 Created using Sphinx 1.1.3.

 Brought to you by Read the Docs

 	latest

 	v2.0

 Navigation

 	
 index

 	froide 1.0a1 documentation

Index

 Copyright 2011, Stefan Wehrmeyer.
 Created using Sphinx 1.1.3.

 Brought to you by Read the Docs

 	latest

 	v2.0

 _static/down.png

_static/plus.png

_static/comment.png

_static/minus.png

_static/comment-bright.png

_static/ajax-loader.gif

_static/file.png

search.html

 Navigation

 		
 index

 		froide 1.0a1 documentation »

 Search

 Please activate JavaScript to enable the search
 functionality.

 From here you can search these documents. Enter your search
 words into the box below and click "search". Note that the search
 function will automatically search for all of the words. Pages
 containing fewer words won't appear in the result list.

 © Copyright 2011, Stefan Wehrmeyer.
 Created using Sphinx 1.1.3.

 Brought to you by Read the Docs

 		latest

 		v2.0

_static/comment-close.png

_static/up-pressed.png

_static/down-pressed.png

_static/up.png

